
TOP 50
JAVASCRIPT
INTERVIEW
QUESTIONS
With Example Answers

Review these common JavaScript interview questions and
answers and practice your coding fundamentals with this
guide for your next interview.

Preparing for a JavaScript interview requires a lot of work.
It’s important to be well-known in the fundamentals but
you also should have some grasp on how to debug
JavaScript code, what some of the advanced functions are
and how to build projects in it.

COMMON JAVASCRIPT INTERVIEW QUESTIONS

1. What are the different data types in JavaScript?

2. What is hoisting in JavaScript?

3. What is the difference between null and undefined?

4. What are closures in JavaScript?

5. What is a callback function in JavaScript?

6. What are promises in JavaScript?

7. What is the purpose of the setTimeout() function in

Javascript?

8. How can you check if an array includes a certain

value?

9. How can you remove duplicates in an array?

10. What is the purpose of async and await in

JavaScript?

TOP 50 JAVASCRIPT INTERVIEW QUESTIONS WITH
EXAMPLE ANSWERS

graphicodar

JAVASCRIPT FUNDAMENTALS

Note: To know the type of a JavaScript variable,
we can use the typeof operator.

1. What is JavaScript?

A high-level, interpreted programming language
called JavaScript makes it possible to create
interactive web pages and online apps with dynamic
functionality. Commonly referred to as the universal
language, Javascript is primarily used by developers
for front-end and back-end work.

2. What are the different data types in JavaScript?

Primitive data types can store only a single value. To
store multiple and complex values, non-primitive
data types are used.

JavaScript has six primitive data types:
Number
String
Boolean
Null
Undefined
Symbol

It also has two compound data types:
Object
Array

graphicodar

hoistedFunction();

// Outputs " Hello world! " even when the function
is declared after calling function

 hoistedFunction(){
 console.log(" Hello world! ");
 }

3. What is hoisting in JavaScript?

Hoisting is a JavaScript concept that refers to the
process of moving declarations to the top of their
scope. This means that variables and functions can
be used before they are declared, as long as they are
declared before they are used in a function.

For example, the following code will print "Hello,
world!" even though the function is declared after
calling function.

4. What is the difference between null and undefined?

null is an assignment value that represents no value
or an empty value, while undefined is a variable that
has been declared but not assigned a value.

 var x;
 console.log(x); // Output : undefined

 var y = null;
 console.log(y); // Output : null

graphicodar

 var x = 10;

 debugger;

 x = x + 1;

 debugger;

 console.log(x);

5. Why do we use the word “debugger” in JavaScript?

The word “debugger” is used in JavaScript to refer to
a tool that can be used to step through JavaScript
code line by line. This can be helpful for debugging
JavaScript code, which is the process of finding and
fixing errors in JavaScript code.

To use the debugger, you need to open the
JavaScript console in your browser. Then, you can
use debugger commands to comb through your code
line by line.

It's essential to know debugging techniques as well
as the more general ideas behind code optimization
and speed improvement. In addition to operating
smoothly, efficient code significantly enhances the
user experience.

For example, the following code will print the value
of the x variable at each step of the debugger.

graphicodar

 const person ={
 name : “Jonh”,
 greet : funtion(){
 console.log(“Hello, “ + this.name);
 }
}

person.greet(); // Output : Hello, Jonh

6. What is the purpose of the “this” keyword in
JavaScript?

The this keyword refers to the object that is
executing the current function or method.

It allows access to object properties and methods
within the context of that object.

7. What is the difference between == and === operators in
JavaScript?

The equality == operator is a comparison operator
that compares two values and returns true if they
are equal. The strict equality === operator is also a
comparison operator, but it compares two values
and returns true only if they are equal and of the
same type.

For example, the following code will return true,
because the values of the x and y variables are equal.

graphicodar

 var x = 10;
 var y = 10;
 console.log(x == y); // Output : true
 console.log(x === y); // Output : false

8. What is the difference between “var” and “let”
keywords in JavaScript?

The var and let keywords are both used to declare
variables in JavaScript. However, there are some key
differences between the two keywords.

The var keyword declares a global variable, which
means that the variable can be accessed from
anywhere in the code. The let keyword declares a
local variable, which means that the variable can
only be accessed within the block of code where it is
declared.

 {
 let x = 10;
 console.log(x); // Output : 10
 }

graphicodar

9. What are closures in JavaScript?

Closures (closureFn) are functions that have access
to variables from an outer function even after the
outer function has finished executing. They
“remember” the environment in which they were
created.

 function outer(){
 var outerVar = “Hello”;
 function inner(){
 console.log(outerVar):
 }
 return inner;
 }
 var clouserFn = outer();
 clouserFn(); //Output : Hello

10. What is event delegation in JavaScript?

Event delegation is a technique where you attach a
single event listener to a parent element, and that
event listener handles events occurring on its child
elements. It helps optimize performance and reduce
memory consumption.

graphicodar

11. What is the difference between “let”, “const”, and
“var”?

let and const were introduced in ES6 and have block
scope. let is reassignable, and const is non-
reassignable. var is function-scoped and can be
redeclared and reassigned throughout the function.

 let x = 5;
 x = 10;
 console.log(x); //Output : 10

 const y = 5;
 y = 10; //Error: Assignment to constant variable
 console.log(y);

 var x = 5;
 var x = 10;
 console.log(x); //Output : 10

12. What is implicit type coercion in JavaScript?

Implicit type coercion is a JavaScript concept that
refers to the automatic conversion of a value from
one type to another. In JavaScript, this conversion
follows a priority order that typically begins with
strings, then numbers, and finally Booleans. If you
try to add a string to a number, JavaScript will
implicitly coerce the number to a string before
performing the addition operation because strings
have the highest priority in type coercion.

graphicodar

For example, when you combine the number 5 with
the string '10' using the addition operator, the result
is the string '510'. This occurs because JavaScript
will implicitly convert the number 5 to a string
following the priority of coercion, and then
concatenate it to the string '10'.

 var x = 5;
 var y = “10";
 console.log(x + y); //Output : “510”

13. Explain the concept of prototypes in JavaScript.

Prototypes are a mechanism used by JavaScript
objects for inheritance. Every JavaScript object has
a prototype, which provides properties and methods
that can be accessed by that object.

 function Person(name){
 this.name = name;
 }

 Person.prototype.greet : function(){
 console.log(“Hello, ” + this.name);
 }

 var person = new Person(“Jonh”);
 person.greet(); //Output: Hello, Jonh

graphicodar

 console.log(3 + 2 + “7”);

15. How can you clone an object in JavaScript?

There are multiple ways to clone an object in
JavaScript. One common method is using the
Object.assign() method or the spread operator (...).

const obj1 = {name: “Jonh”, age: 30};

 // Using Object.assign()
 const obj2 = Object.assign({},obj1);

 // Using Spread Operator
 const obj3 = {...obj1};

 console.log(obj2); //Output: { name: “Jonh”,
age: 30}

 console.log(obj3); //Output: { name: “Jonh”,
age: 30}

14. What is the output of the following code?

The output will be "57". The addition operation is
performed from left to right, and when a string is
encountered, it performs concatenation.

graphicodar

INTERMEDIATE CONCEPTS

16. What are higher-order functions in JavaScript?

Higher order functions are functions that can accept
other functions as arguments or return functions as
their results. They enable powerful functional
programming patterns in JavaScript.

 function multiplybyTwo(num){
 num * 2;
 }
 function applyOperation(num, operation){
 return operation(num);
 }
 const result = applyOperation(5, multiplybyTwo);
 console.log(result); //Output: 10

17. What is the purpose of the bind() method in
JavaScript?

The bind() method is used to create a new function
with a specified this value and an initial set of
arguments. It allows you to set the context of a
function permanently.

graphicodar

18. What is the difference between function declarations
and function expressions?

Function declarations are defined using the function
keyword, while function expressions are defined by
assigning a function to a variable. Function
declarations are hoisted, while function expressions
are not.

 const person ={
 name : “Jonh”,
 greet : funtion(){
 console.log(“Hello, “ + this.name);
 }
}

 const greetFn = person.greet;
 const boundFn = greetFn.bind(person);
 boundFn(); // Output : Hello, Jonh

 // Function Declaration
 function multiply(a, b){
 return a * b;
 }
 // Function Expression
 const add = function(a, b){
 return a + b;
 }

graphicodar

20. What is memoization in JavaScript?

Memoization is a technique that can be used to
improve the performance of JavaScript code.

Memoization works by storing the results of
expensive calculations in a cache. This allows the
JavaScript code to avoid re-performing the
expensive calculations if the same input is provided
again.

For example, the following code calculates the
factorial of a number. The factorial of a number is
the product of all the positive integers from one to
the number.

19. What are the different types of errors in JavaScript?

JavaScript can throw a variety of errors, including:
Syntax errors: These errors occur when the
JavaScript code is not syntactically correct.
Runtime errors: These errors occur when the
JavaScript code is executed and there is a
problem.
Logical errors: These errors occur when the
JavaScript code does not do what it is supposed
to do.

graphicodar

 function factorial(n){
 if(n === 0){
 return 1;
 }else{
 return n * factorial(n - 1);
 }
 }

This code can be memoized as follows:

 function factorial(n){
 if(factorialCache[n] !== undefined){
 return factorialCache[n];
 }else{
 factorialCache[n] = n * factorial(n - 1);
 return factorialCache[n];
 }
 }

graphicodar

21. What is recursion in JavaScript?

Recursion is a programming technique that allows a
function to call itself. Recursion can be used to solve
a variety of problems, such as finding the factorial of
a number or calculating the Fibonacci sequence.

The following code shows how to use recursion to
calculate the factorial of a number:

 function factorial(n){
 if(n === 0){
 return 1;
 }else{
 return n * factorial(n - 1);
 }
 }

22. What is the use of a constructor function in
JavaScript?

A constructor function is a special type of function
that is used to create objects. Constructor functions
are used to define the properties and methods of an
object.

The following code shows how to create a
constructor function:

graphicodar

 function Person(name, age){
 this.name = name;
 this. age = age;
 }

23. What is the difference between a function declaration
and a function expression in JavaScript?

A function declaration is a statement that defines a
function. A function expression is an expression that
evaluates to a function.

The following code shows an example of a function
declaration. This code defines a function named
factorial. The factorial function calculates the
factorial of a number.

 function factorial(n){
 if(n === 0){
 return 1;
 }else{
 return n * factorial(n - 1);
 }
 }

The following code shows an example of a function
expression:

graphicodar

 var factorial = function(n){
 if(n === 0){
 return 1;
 }else{
 return n * factorial(n - 1);
 }
 }

24. What is a callback function in JavaScript?

A callback function is a function passed as an
argument to another function, which is then invoked
inside the outer function. It allows asynchronous or
event-driven programming.

 function fetchData(callback){
 setTimeOut(functio(){
 const data = “Some Data”;
 callback(data);
 }, 2000);
 }
 function processData(data){
 console.log(“Data Received: ” + data);
 }
 fetchData(processData); //Output: after 2
seconds: Data Received: Some Data

graphicodar

25. What are promises in JavaScript?

Promises are objects used for asynchronous
operations. They represent the eventual completion
or failure of an asynchronous operation and allow
chaining and handling of success or error cases.

 function fetchData(){
 return new Promise(function(resolve, reject){
 setTimeOut(functio(){
 const data = “Some Data”;
 callback(data);
 }, 2000);
 }
 }
 fetchData()
 .then(function(data){
 console.log(“Data Received: ” + data);
 })
 .catch(function(error)){
 console.log(“Error Occured: ” + error);
 });
)

graphicodar

26. What is the difference between synchronous and
asynchronous programming?

In synchronous programming, the program
execution occurs sequentially, and each statement
blocks the execution until it is completed. In
asynchronous programming, multiple tasks can be
executed concurrently, and the program doesn’t
wait for a task to finish before moving to the next
one.
Synchronous coding example:

 console.log(“Statement 1”);
 console.log(“Statement 2”);
 console.log(“Statement 3”);

Asynchronous code example:

 console.log(“Statement 1”);
 setTimeOut(functio(){
 console.log(“Statement 2”);
 }, 2000);
 console.log(“Statement 3”);

27. How do you handle errors in JavaScript?

Errors in JavaScript can be handled using try-catch
blocks. The try block contains the code that may
throw an error, and the catch block handles the error
and provides an alternative execution path.

graphicodar

 try{
 throw new Error(“Something Went Wrong”);
 } catch(error){
 console.log(“Error Occured : ” + error.message);
 }

28. Explain the concept of event bubbling in JavaScript.

Event bubbling is the process where an event
triggers on a nested element, and then the same
event is propagated to its parent elements in the
document object model (DOM) tree. It starts from
the innermost element and goes up to the document
root.

Example:

 <div id=”parent”>
 <div id=”Child”>Click Me!</div>
 </div>

When you click on the child element, both the child
and parent event handlers will be triggered, and the
output will be:

graphicodar

document.getElementById(“child”).addEventListe
ner(“click”, function(){
 console.log(“Child clicked”);
 });

document.getElementById(“parent”).addEventLis
te ner(“click”, function(){
 console.log(“Parent clicked”);
 });

29. What are arrow functions in JavaScript?

Arrow functions are a concise syntax for writing
JavaScript functions. They have a more compact
syntax compared to traditional function expressions
and inherit the this value from their surrounding
scope.

Example:

 const multiply = (a, b) => a * b;
 console.log(multiply(2, 3)); //Output: 6
 const greet = name =>{
 console.log(“Hello, ” + name);
 }
 greet(“Jonh”); //Output: Hello, Jonh

graphicodar

31. What is the purpose of the setTimeout() function in
JavaScript?

The setTimeout() function is used to delay the
execution of a function or the evaluation of an
expression after a specified amount of time in
milliseconds.

 console.log(“Start”);
 setTimeOut(functio(){
 console.log(“Delayed”);
 }, 2000);
 console.log(“End”);

Output after two seconds:

 Start
 End
 Delayed

graphicodar

32. What is event delegation and why is it useful?

Event delegation is a technique where you attach a
single event listener to a parent element to handle
events occurring on its child elements. It’s useful for
dynamically created elements or when you have a
large number of elements.

 <ul id=”mylist”>
 Item 1
 Item 2
 Item 3

document.getElementById(“mylist”).addEventList
e ner(“click”, function(event){
 if(event.target.nodeName === “LI”){
 console.log(event.target.textContent);
 }
 });

33. How can you prevent the default behavior of an
event in JavaScript?

You can use the preventDefault() method on the
event object within an event handler to prevent the
default behavior associated with that event.

graphicodar

Click Me!<a/>

document.getElementById(“myLink”).addEventLi
ste ner(“click”, function(event){
 event.target.preventDefault();
 console.log(“Link clicked, but default behavior
prevented”);
 });

34. What is the difference between localStorage and
sessionStorage in JavaScript?

Both localStorage and sessionStorage are web
storage objects in JavaScript, but they have
different scopes and lifetimes.

localStorage persists data even after the browser
window is closed and is accessible across
different browser tabs/windows of the same
origin.
sessionStorage stores data for a single browser
session and is accessible only within the same
tab or window.

 localStorage.setItem(“name”, “Jonh”);
 console.log(localStorage.getItem(“name”));

 sessionStorage.setItem(“name”, “Jonh”);
 console.log(sessionStorage.getItem(“name”));

graphicodar

35. How can you convert a string to lowercase in
JavaScript?

You can use the toLowerCase() method to convert a
string to lowercase in JavaScript.

 const str = “Hello, World”;
 console.log(str.toLowerCas());
 //Output: hello, world

graphicodar

36. What is the purpose of the map() function in
JavaScript?

The map() function is used to iterate over an array
and apply a transformation or computation on each
element. It returns a new array with the results of the
transformation.

 const num= [1, 2, 3, 4, 5];
 const squareNum = num.map(function(n)){
 return n * n;
 }
 console.log(squareNum);
 //Output: [1, 4, 9, 16, 25]

ADVANCED CONCEPTS

37. What is the difference between splice() and slice()?

splice() is used to modify an array by adding,
removing, or replacing elements at a specific
position.
slice() is used to create a new array that contains
a portion of an existing array, specified by the
starting and ending indices.

graphicodar

 const fruits= [”apple”, “banana”, “orange”];
 fruits.splice(1, 1, “grape”);
 // remove “banana” & add “grape” at index 1
 console.log(fruits);
 //Output: [”apple”, “grape”, “orange”]

38. What is the purpose of the reduce() function in
JavaScript?

The reduce() function is used to reduce an array to a
single value by applying a function to each element
and accumulating the result.

Example of splice():

 const num= [1, 2, 3, 4, 5];
 const slicedNum = num.slice(1, 4);
 // Extract elements from index 1 to 3
 console.log(slicedNum);
 //Output: [2, 3, 4]

Example of slice():

 const num= [1, 2, 3, 4, 5];
 const sum= num.reduce(function(acc, num){
 return acc + num;
 }, 0);
 console.log(sum);
 //Output: 15

graphicodar

39. How can you check if an array includes a certain
value in JavaScript?

You can use the includes() method to check if an
array includes a specific value. It returns true if the
value is found, and false otherwise.

 const fruits= [”apple”, “banana”, “orange”];
 console.log(fruits.includes(“banana”));
 //Output: true

 console.log(fruits.includes(“grape”));
 //Output: false

40. What is the difference between prototype and
instance properties in JavaScript?

A prototype property is a property that is defined on
the prototype object of a constructor function.
Instance properties are properties that are defined
on individual objects that are created by a
constructor function.

Prototype properties are shared by all objects that
are created by a constructor function. Instance
properties are not shared by other objects.

graphicodar

41. What is the difference between an array and an
object in JavaScript?

An array is a data structure that can store a
collection of values. An object is a data structure
that can store a collection of properties.

Arrays are indexed by numbers. Objects are indexed
by strings. Arrays can only store primitive data types
and objects. Objects can store primitive data types,
objects and arrays.

42. How can you remove duplicates from an array in
JavaScript?

One way to remove duplicates from an array is by
using the Set object or by using the filter() method
with the indexOf() method.

 const num= [1, 2, 2, 3, 4, 4, 5];
 const uniqueNum= [...new Set(num)]
 console.log(uniqueNum);

graphicodar

43. What is the purpose of the fetch() function in
JavaScript?

The fetch() function is used to make asynchronous
HTTP requests in JavaScript. It returns a Promise
that resolves to the response from the server.

Example:

 fetch(URL)
 .then(function(response){
 return response.json();
 })
 .then(function(data){
 console.log(data);
 })
 .catch(function(error){
 console.log(“Error Occured: ” + error);
 });

44. What is a generator function in JavaScript?

A generator function is a special type of function
that can be paused and resumed during its
execution. It allows generating a sequence of values
over time, using the yield keyword.

graphicodar

 function generateNum(){
 yield 1;
 yield 2;
 yield 3;
 }
 const generator = generateNum();
 console.log(generator.next().value); //Output: 1
 console.log(generator.next().value); //Output: 2
 console.log(generator.next().value); //Output: 3

45. What are the different events in JavaScript?

There are many different events in JavaScript, but
some of the most common events include:

Click: The click event occurs when a user clicks
on an HTML element.
Mouseover: The mouseover event occurs when a
user's mouse pointer moves over an HTML
element.
Keydown: The keydown event occurs when a user
presses a key on the keyboard.
Keyup: The keyup event occurs when a user
releases a key on the keyboard.
Change: The change event occurs when a user
changes the value of an HTML input element.

graphicodar

46. What are the different ways to access an HTML
element in JavaScript?

There are three main ways to access an HTML
element in JavaScript:

Using the getElementById() method: The
getElementById() method takes a string as an
argument and returns the HTML element with the
specified ID.

1.

Using the getElementsByTagName() method: The
getElementsByTagName() method takes a string
as an argument and returns an array of all the
HTML elements with the specified tag name.

2.

Using the querySelector() method: The
querySelector() method takes a CSS selector as
an argument and returns the first HTML element
that matches the selector.

3.

47. What is the scope of a variable in JavaScript?

The scope of a variable in JavaScript is the part of
the code where the variable can be accessed.
Variables declared with the var keyword have a local
scope, which means that they can only be accessed
within the block of code where they are declared.
Variables declared with the let keyword have a block
scope, which means that they can only be accessed
within the block of code where they are declared and
any nested blocks. Variables declared with the const
keyword have a global scope, which means that they
can be accessed from anywhere in the code.

graphicodar

48. What are the different ways to create objects in
JavaScript?

In JavaScript, there are several ways to declare or
construct an object.

Object.1.
using Class.2.
create Method.3.
Object Literals.4.
using Function.5.
Object Constructor6.

49. What is the purpose of the window object in
JavaScript?

The window object represents the browser window.
The window object can be used to access the
browser’s features, such as the location bar, the
status bar and the bookmarks bar.

50. What is the purpose of the async and await keywords
in JavaScript?

The async and await keywords are used for handling
asynchronous operations in a more synchronous-like
manner.
The async keyword is used to define an
asynchronous function, and the await keyword is
used to pause the execution of an async function
until a promise is fulfilled or rejected.

graphicodar

 async function fetchData(){
 try{
 const response = await fetch(URL);
 const data = await response.json();
 console.log(data);
 }catch(error){
 console.log(“Error Occured: ” + error);
 };
 }
 fetchData();

graphicodar

HOW TO PREPARE FOR A
JAVASCRIPT INTERVIEW

7 WAYS TO PREPARE FOR A JAVASCRIPT
INTERVIEW

In order to ace a JavaScript interview, you need to be
ready for anything. It’s important to practice your code,
but you should also be able to clearly explain how
different functions work, have real world experience
working in JavaScript and understand how to debug.

1. Review JavaScript fundamentals.
2. Master key concepts.
3. Study common interview questions.
4. Master debugging skills.
5. Practice coding.
6. Build projects.
7. Mock interviews.

Fortunately, there are some basic steps you can take to
be prepared and stand out from other applicants.

graphicodar

1. Review JavaScript Fundamentals

Make sure you are well-versed in the foundational
concepts of JavaScript, such as data types,
variables, operators, control structures, functions
and objects.

2. Master Key Concepts

It’s also important to study up on key JavaScript
topics like promises, asynchronous programming,
hoisting, scope, closures, prototypes and ES6
features. You should understand how each of these
works.

3. Study Common Interview Topics

Take the time to review JavaScript interview
questions that are regularly asked, including those
about closures, prototypes, callbacks, promises,
AJAX (asynchronous JavaScript and XML), error
handling and module systems. Most interviews
follow a similar pattern. Preparing answers for those
questions will help you stand out from other
candidates.

graphicodar

4. Master Debugging Skills

Interviewers for JavaScript will often look to assess
your code debugging skills. Practice using IDEs or
browser developer tools to find and correct common
JavaScript code issues. Learn how to read error
messages and review basic debugging techniques.

5. Practice Coding

To develop your coding abilities, complete coding
tasks and challenges. Concentrate on standard
JavaScript data structures and algorithms such
arrays, strings, objects, recursion and sorting
techniques.

6. Build Projects

Take on modest JavaScript projects to get
experience and show that you can create useful
applications. Showing off your portfolio at the
interview is also beneficial. In addition, developers
can also work on JavaScript projects to obtain
practical experience and show that they are capable
of building effective applications.

graphicodar

7. Mock Interviews

With a friend or mentor, practice mock interviews
paying particular attention to both behavioral and
technical components. This enables you to hear
useful criticism and become accustomed to the
interview process.

It’s not just mastering the technical aspect of
JavaScript, it’s about your body language and how
you explain your answers. Many companies are also
assessing your ability to work within a team and pair
program. The better you can explain your actions
and thought process, the more likely you’ll be to win
over the interviewer.

graphicodar

